SUNSYS P33TR - P66TL/TR - P100TL/TR

Installations- und bedienungsanleitung DE Manuel d'installation et d'utilisation (FR)

Installation and operating manual GB

Manuale di installazione e uso 🗇

INDEX

1.1. 1.2. 1.3.	RUCTIONS PERSONAL SAFETY PRECAUTIONS COMPLIANT USE STANDARDS AND GUIDELINES IDENTIFICATION DATA PLATE	4 5 5
2.1. 2.2.	N OF THE SYSTEM OVERVIEW DESCRIPTION TECHNICAL DATA	6 7
	TES	
4. TRANSPORT	AND UNWRAPPING	18
5.1. 5.2. 5.3. 5.4. 5.5. 5.6.	N ELECTRICAL INSTALLATION REQUIREMENTS CONNECTING THE PHOTOVOLTAIC GENERATOR AND MAIN AC NETWORK TO THE POWER TERMINALS OF THE SUNSYS P33TR INVERTER CONNECTING THE PHOTOVOLTAIC GENERATOR AND MAIN AC NETWORK TO THE POWER TERMINALS OF THE SUNSYS P66TR INVERTER CONNECTING THE PHOTOVOLTAIC GENERATOR AND MAIN AC NETWORK TO THE POWER TERMINALS OF THE SUNSYS P66TL INVERTER CONNECTING THE PHOTOVOLTAIC GENERATOR AND MAIN AC NETWORK TO THE POWER TERMINALS OF THE SUNSYS P66TL INVERTER CONNECTING THE PHOTOVOLTAIC GENERATOR AND MAIN AC NETWORK TO THE POWER TERMINALS OF THE SUNSYS P100TL INVERTER AUXILIARY POWER SUPPLY OPTIONAL INPUT FOR EXTERNAL INTERFACE PROTECTION	19 21 22 24 26 28
6.1. 6.2. 6.3.	MODES	29 32 32
7.2. 7.3. 7.4. 7.5.	DISPLAY MENU	38 39 40 40
8.1.	ATION MULTILEVEL COMMUNICATION MODBUS/TCP INTERFACE	43
9.1.	MAINTENANCE	45
10.1. 10.2. 10.3.	HOOTING SYSTEM WARNINGS INVERTER WARNINGS SYSTEM ALERTS INVERTER ALERTS	46 46 47

1. SAFETY INSTRUCTIONS

1.1. PERSONAL SAFETY PRECAUTIONS

To prevent personal injury and damage to property please read the following warnings before activating the device for the first time:

Read the operating instructions beforehand!

- Observe the safety warnings!
- Observe the user information!

Risk of electric shocks from live device parts!

In the event of system maintenance, carry out the following steps beforehand:

- Disconnect the photovoltaic system and the AC power supplies.
- Make sure the system cannot be restarted.
- Make sure the electricity supply has been disconnected.
- Earth the equipment sub-assemblies and short-circuit them.
- Cover or separate nearby live device units.
- Before working on circuits upstream make sure the inverter is disconnected by opening the DC disconnection switches.
- If there are field panels upstream of the inverter attach label to them displaying the following information:

WARNING!

DEVICE WITH SEVERAL HAZARDOUS VOLTAGE POWER SUPPLY SOURCES INSIDE EVEN AFTER DISCONNECTION DEVICES HAVE BEEN OPENED.

ADOPT ALL SAFETY MEASURES REQUIRED FOR PROCEDURES ON LIVE PARTS.

The following measures are required:

- To prevent personal injury and damage to property, the device should only be used by qualified personnel with electrical and technical training.
- The qualified technician must have read the operating instructions.
- National accident prevention standards must be observed.
- Maintenance and repair procedures must only be carried out by trained personnel authorised by Socomec. The user is strictly prohibited from carrying out procedures which could involve compromise the integrity of the inverter (for example, removing inverter modules).

During installation, observe the following:

- Observe the connection conditions and technical data.
- Observe standards regarding electrical installation, e.g. cable cross-section, contactor connection and earthing.
- Do not touch any components and electronic contacts (electrostatic charge could destroy the components).

DANGER!

- Risk of electric shock from live device parts!
- SUNSYS P inverters can be connected to a maximum of three separately protected power supplies:
- 1 DC cable Photovoltaic generator power supply (separate for the three modules or shared)
- 2 AC cable Power from the mains network, supplied by the electricity company
- 3 AC cable Auxiliary power supply
- Before carrying out any work make sure the electricity supply has been disconnected.
- All DC power supplies should be considered as part of the same circuit, even in the configuration with centralised multi-string inverter. Before carrying out any work make sure all electricity supplies have been disconnected.

DANGER!

- Risk of electric shock from live device parts!
- The intermediate inverter circuit may be live even after it has been deactivated.
- 5 min Wait 5 minutes for the power to disperse and make sure that there is none remaining.

DANGER!

- Risk of electric shock from live device parts!
- The photovoltaic modules are live as soon as they are exposed to sunlight.
- Take suitable measures and make sure there is no power remaining.

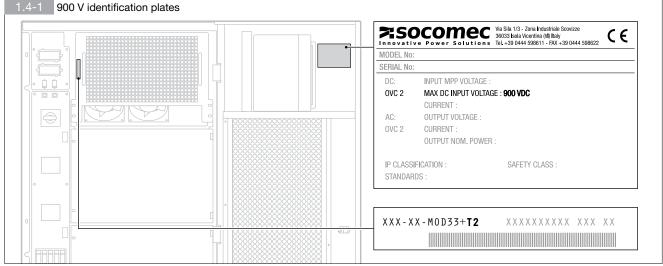
1.2. COMPLIANT USE

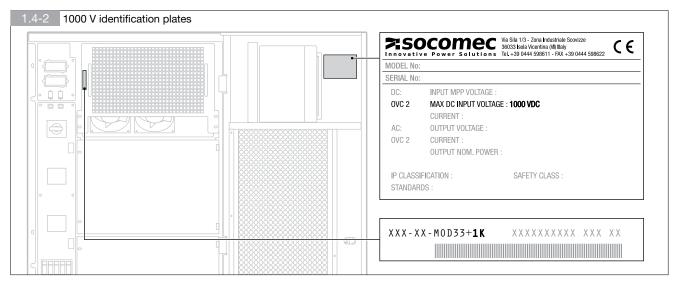
SUNSYS P are photovoltaic inverters for the conversion of direct current into alternating current in compliance with the mains network.

Any use other than the specified purpose will therefore be considered as improper. The manufacturer/supplier shall not be held responsible for damage resulting from this. The risk and responsibility lies with the system manager.

SUNSYS P are constructed in accordance with current technical regulations and official safety standards. Before shipment all devices undergo technical safety testing. Nevertheless, incorrect or improper use may endanger the life or health of the operator and third parties, or damage equipment or other materials.

Compliant use also includes observing operating instructions. SUNSYS P must be installed by specialist personnel deemed responsible for complying with existing standards. Repair work may only be carried out by authorised centres. Arbitrary and unauthorised work may have fatal consequences, cause injury or damage property. In the event of damage, SOCOMEC shall assume no responsibility and the warranty shall be void.

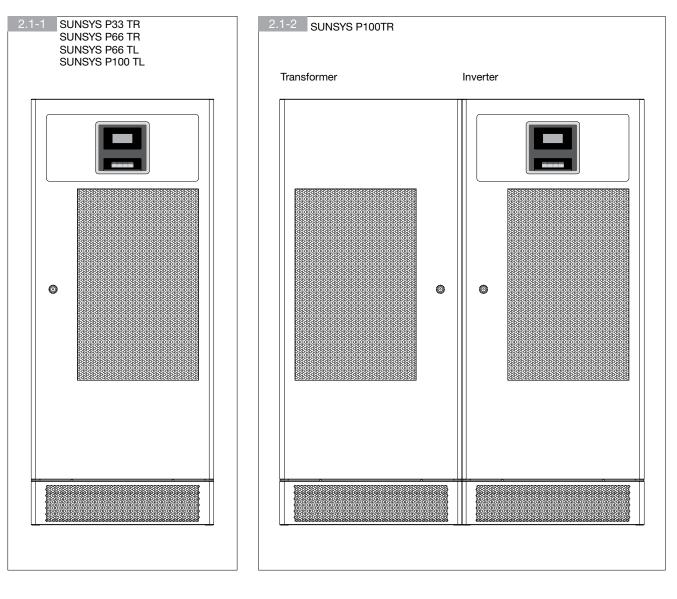

1.3. STANDARDS AND GUIDELINES


When carrying out electrical installation, all standards specified by the IEC and the electricity supplier must be observed. All national standards apply to photovoltaic systems must be respected during insatallation and configuration.

1.4. IDENTIFICATION DATA PLATE

WARNING! Before con

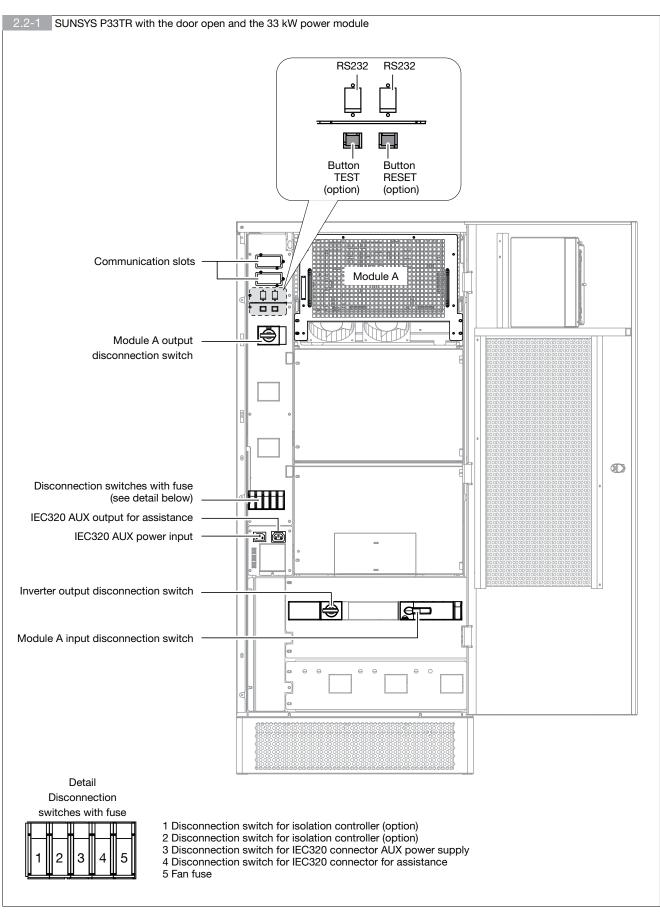
Before connecting the modules, check that they are fully compatible with the model of system in use.



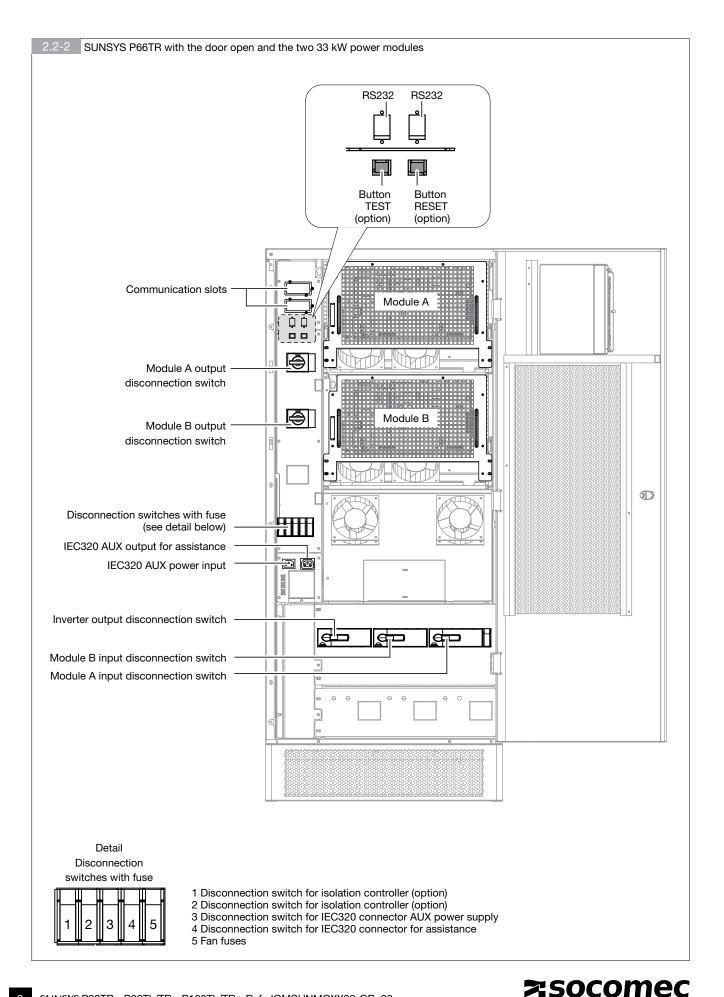
ENGLISH

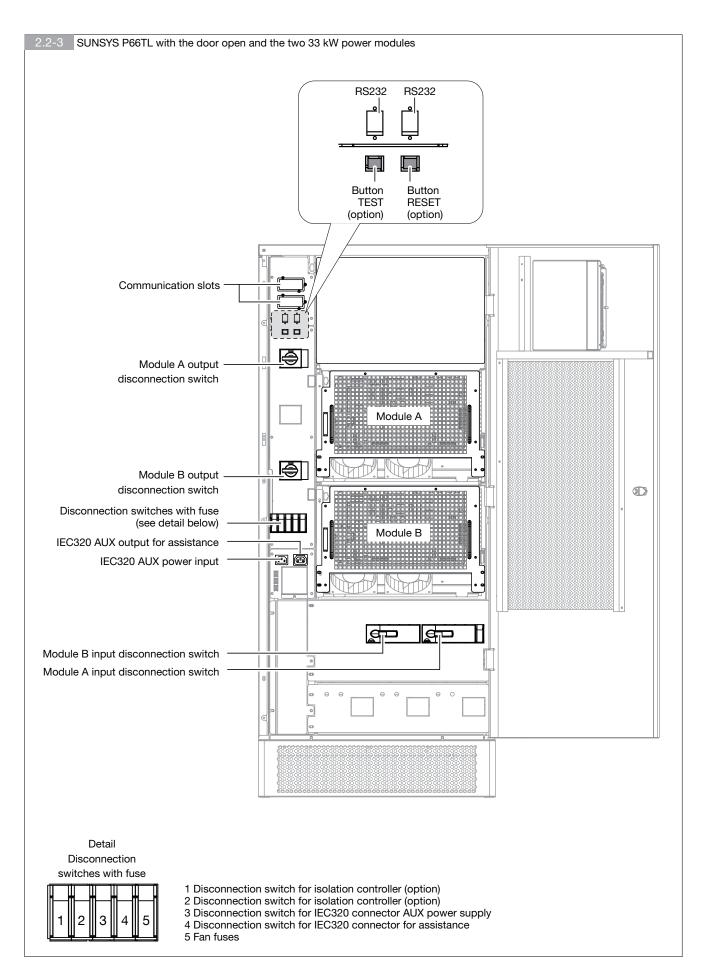
2. DESCRIPTION OF THE SYSTEM

2.1. OVERVIEW

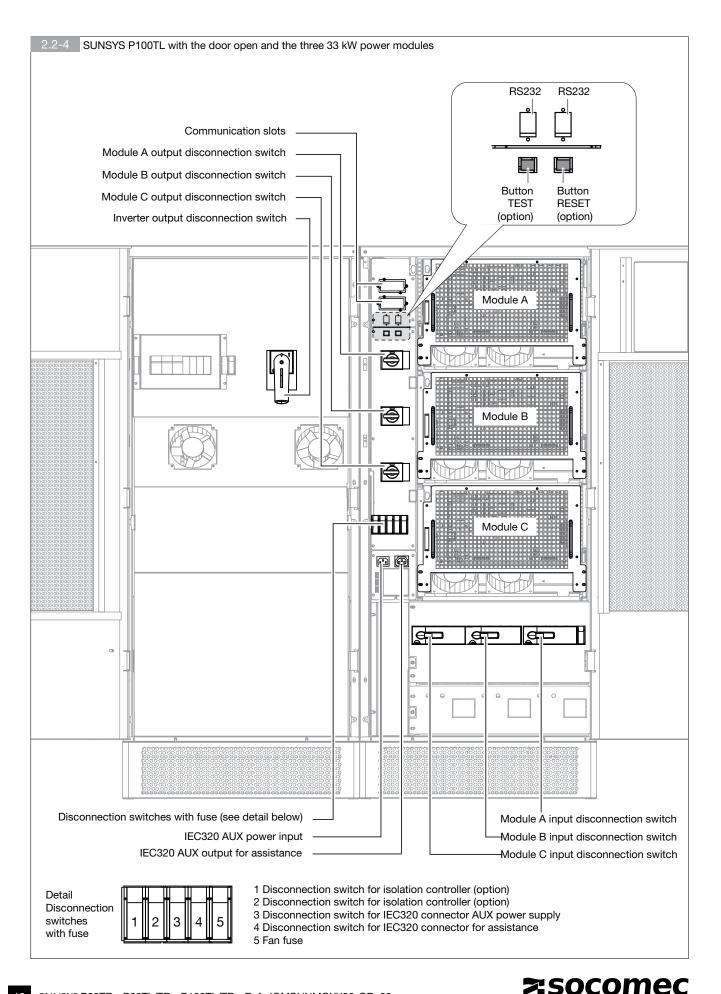


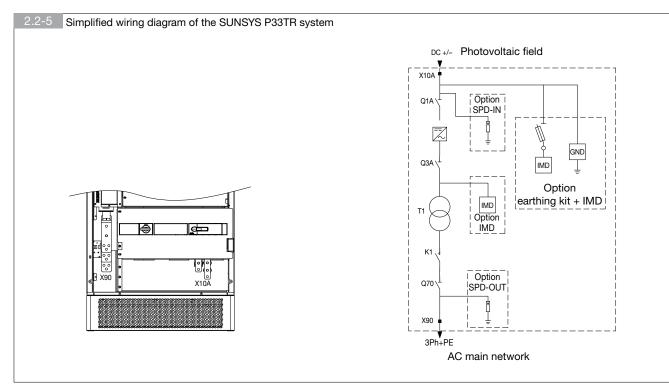
2.2. DESCRIPTION

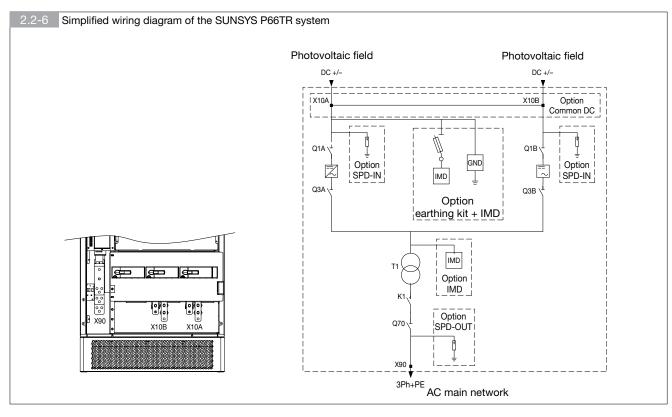

SOCOI


novative Power Solutions

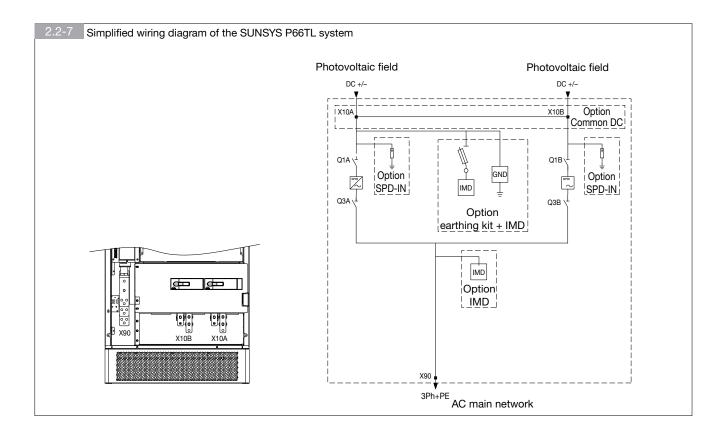
7

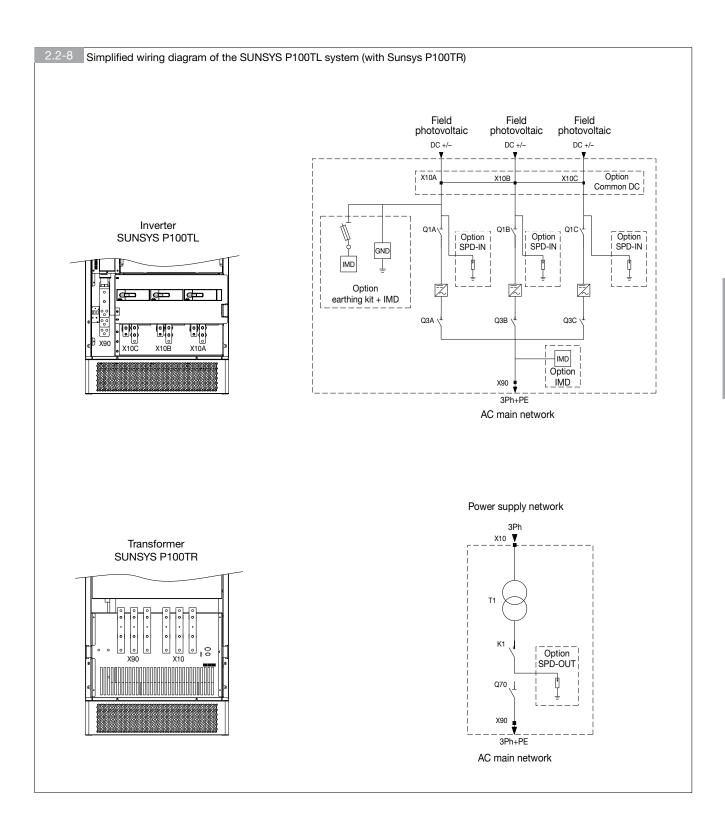

vative Power Solutions

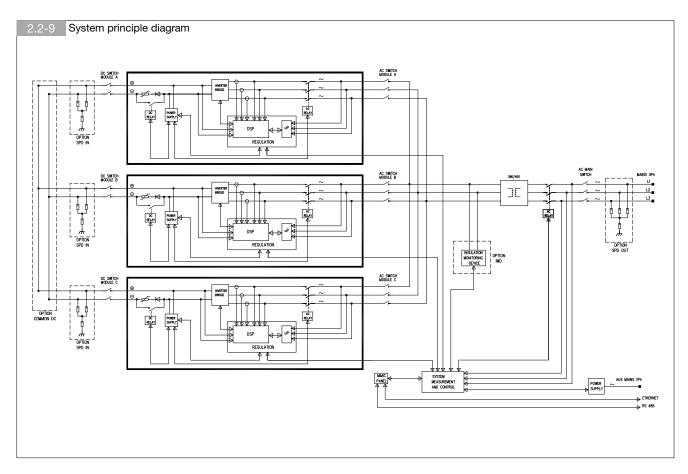

vative Power Solutions

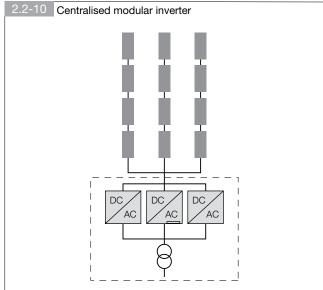


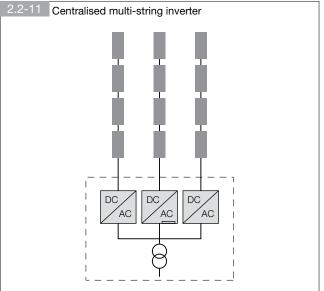
The SUNSYS P series covers a range of power from 33.3 to 100 kW and consists of 1, 2 or 3 modules of 33.3 kW each.

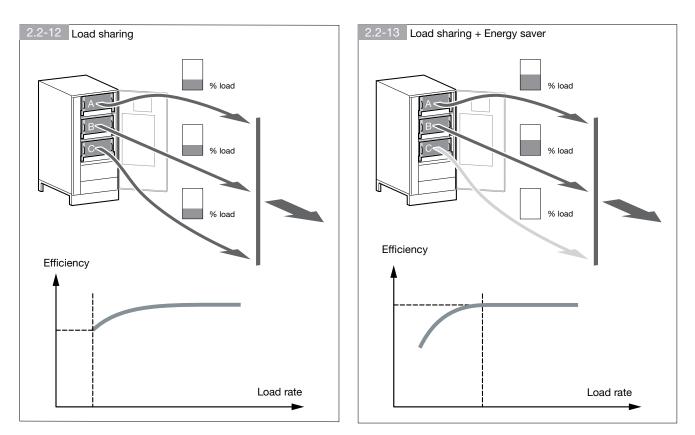

Each module converts the energy provided by the solar panels, using a Maximum Power Point Tracking (MPPT) algorithm to fully exploit the features of the photovoltaic cells.


The DC terminals of all modules can be connected to the same photovoltaic field (centralised modular inverter with single MPPT), or can have different photovoltaic fields (centralised multi-string inverter with separate MPPTs).









In the case of the centralised modular inverter, the 33.3 kW modules run on Energy Saver mode.

This type of operation has two advantages:

- Longer equipment lifetime, as the individual modules are switched on and off at random and run for less time on average, instead of all being switched on and off at the same time.
- Increased efficiency, as only the equipment actually required is activated and operates under optimal efficiency conditions (30-60% of rated power).

In the case of centralised multi-string inverters, the MPPT algorithm of each module runs independently to maximise the power supplied by the photovoltaic panels.

The inverter is equipped with an isolation transformer as standard, and can therefore be used with all photovoltaic panel technology (crystalline, thin film, back contact etc.). For technology which requires one of the photovoltaic generator poles to be earthed, the special optional kit (GND) must be used.

2.2.1. Options

SUNSYS P can be ordered together with the following options:

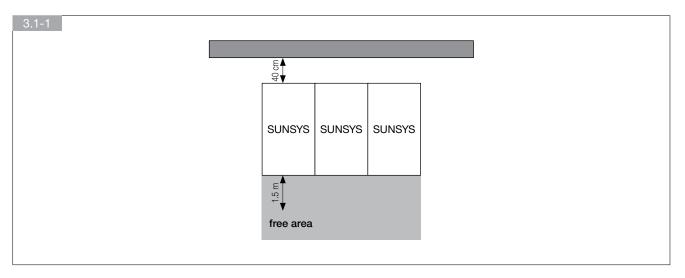
- Earthing: PV generator + or pole earthed (GND)
- Permanent isolation controller (IMD)
- AC over-voltage dischargers (SPDO)
- DC over-voltage dischargers (SPDI)
- Cable fastening brackets

For detailed information regarding the options refer to the relevant documentation.

2.3. TECHNICAL DATA

	SUNSYS P33TR	SUNSYS P66TL	SUNSYS P66TL 1K	SUNSYS P66TR	SUNSYS P100TL	SUNSYS P100TL 1K	SUNSYS P100TR
DC input							
DC rated current	80 A		160 A			240 A	
Max. DC voltage	900 V	900 V	1000 V	900 V	900 V	1000 V	900 V
Stop voltage	350 V	350 V	400 V	350 V	350 V	400 V	350 V
MPP field *	450 to 800 V	450 to 800 V	485 to 850 V	450 to 800 V	450 to 800 V	485 to 850 V	450 to 800 V
MPPT no.	1		1-2			1-3	
AC output						-	
Rated power	33.3 kW/kVA		66.7 kW/kVA			100 kW/kVA	
Maximum power (30 min.)	36.6 kW/kVA		73.4 kW/kVA			110 kW/kVA	
AC voltage							
Output voltage	400 V 3ph	280 V 3ph	320 V 3ph	400 V 3ph	280 V 3ph	320 V 3ph	400 V 3ph
Protection	63 A curve D	200 A curve C	160 A curve C	125 A curve D	250 A curve C	250 A curve C	200 A curve D
Power factor **				≥0.99			
Distortion factor	<3%						
Efficiency							
η % (rat.)	96.1	97.6	98.0	96.3	97.6	98.0	96.4
η %(euro)	95.2	97.3	97.8	95.6	97.3	97.8	95.8
Auxiliary power supp.	0012	0110	0110	00.0	0110	0110	00.0
In operation				<30 W			
On Standby				<10 W			
Environmental conditions							
Cooling air requirements	480 m³/h	960	m³/h	1280 m ³ /h	1440	m³/h	1760 m ³ /h
Dissipated power	1750 W		0 W	3500 W		0 W	5250 W
Dissipated power	5980 BTU/h		BTU/h	11950 BTU/h		BTU/h	17900 BTU/h
Temperature range	0000 210/11	0101		11000 210,11	12100	210/11	11000 210,11
During operation		-5	°C to 40°C (fron	n 40°C to 55°C	with downgradi	າດ)	
During transportation				-5°C to 55°C	inin domigiciai	.9/	
Relative humidity			5% to 95	5% without cond	densation		
Environmental category in accor- dance with EN 62109-1		· · · · · · · · · · · · · · · · · · ·		conditioned indo			
Altitude			≤100	0 m without de	rating		
Protection class in accordance with EN 60529				IP20			
Pollution class in accordance with EN60664-1				3			
Pulse resistance voltage in accordance with EN 60060-1 AC terminals				2.5 kV			
Pulse resistance voltage in accordance with EN 60060-1 DC terminals				4 kV			
Mechanical characteristics							
Dimensions (LxHxD)	600x1400x795 mm	600x1400)x795 mm	600x1400x795 mm	600x1400)x795 mm	1200x1400x 795 mm
Weight	330 kg	125	5 kg	525 kg	190) kg	190 + 580 kg
Noise (front, 1 m)	60 dB			64	dB		
Communication ports							
Serial			R	S232/485 JBL	JS		

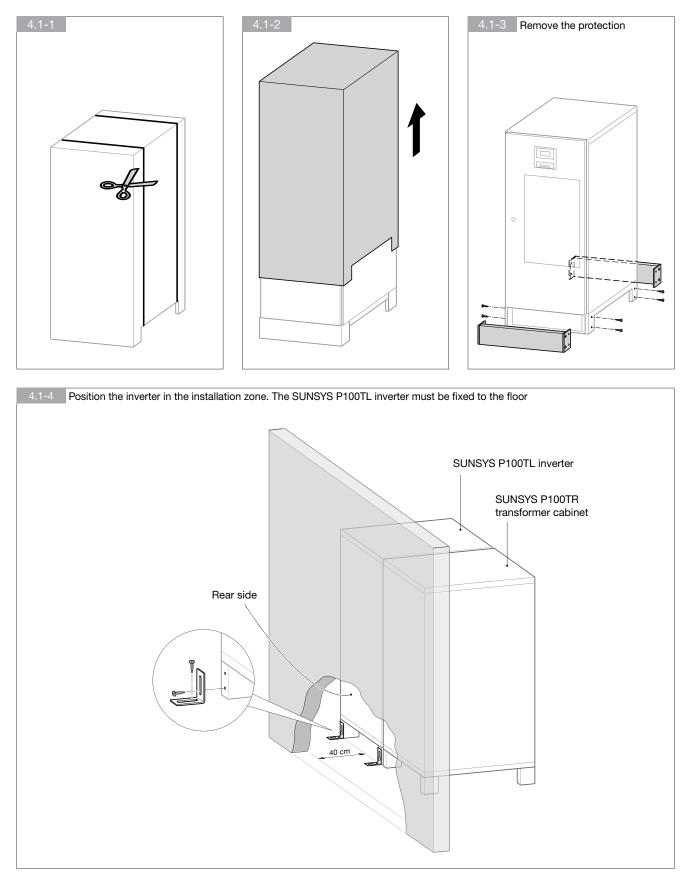
* The full power MPPT voltage range is valid at nominal mains condition


** Adjustable according main supplier condition

3. PREREQUISITES

3.1. INSTALLATION SITE CONDITIONS

The installation site must meet the following requirements:


- The inverter is designed for use within non-air-conditioned rooms in accordance with standard IEC 62109-1. Th inverter is not designed for outdoor use.
- The foundations must be able to withstand the relevant weight (inverter, transportation device) and suited to the base. Stability must also be guaranteed.
- The ambient temperatures, relative humidity and altitude of the installation site are indicated in the technical data table.
- Avoid environments which are dusty or which contain dust from conductive or corrosive materials (e.g. dust from metal or chemical solutions).
- The inverter has front access for handling devices; nevertheless, a space of at least 1.5 metres should be left free at the front of the inverter for any maintenance work required.
- The rear of the inverter must be at least 40 cm away from the wall or other obstacles to guarantee sufficient ventilation (see figure).

4. TRANSPORT AND UNWRAPPING

ENGLISH

5. INSTALLATION

DANGER! Risk of electric shock from live device parts!

- In the event of system maintenance, carry out the following steps beforehand:
- Disconnect the photovoltaic system.
- Make sure the photovoltaic system cannot be restarted.
- Make sure the mains electricity supply has been disconnected.
- Earth the device units and short-circuit them.
- Cover or separate the nearby live device units.
- Before working on the circuits upstream make sure the inverter is disconnected by opening the DC disconnection switches.

DANGER! Risk of electric shock from live device parts!

SUNSYS P can be connected to a maximum of three power supplies:

- 1 DC cable Photovoltaic generator power supply (separated for the three modules or shared)
- 2 AC cable Power from the mains network, supplied by the electricity company
- 3 AC cable Auxiliary power supply
- Before carrying out any work, make sure the electricity supply has been disconnected.
- All DC power supplies should be considered as part of the same circuit, even in the configuration with centralised multi-string inverter. Before carrying out any work, make sure all electricity supplies have been disconnected.

DANGER!

Risk of electric shock from live device parts!

The intermediate inverter circuit may be live even after it has been deactivated.

• Wait 5 minutes for the power to disperse and make sure that there is none remaining.

DANGER! Risk of electric shock from live device parts!

The photovoltaic modules are live as soon as they are exposed to sunlight.

• Take suitable measures and make sure there is no power remaining.

SUNSYS P are designed for instant application. Only the AC and DC cables coming from outside must be installed and the inverter configured.

5.1. ELECTRICAL INSTALLATION REQUIREMENTS

The installation and system must comply with existing national legislation.

The fixed power distribution unit must include protection and disconnection for the main AC network for the auxiliary network.

The following table indicates the sizing of AC protection devices that will ensure correct installation.

Model	Network cable cross-section Main AC (mm ²) ¹	Magneto-thermal switch protecting the main AC network	Differential AC protection (optional)
SUNSYS P33TR	min. 16 / max. 120	63 A type D ²	0.3 A type AC or A
SUNSYS P66TR	min. 35 / max. 120	125 A type D ²	0.3 A type AC or A
SUNSYS P66TL	min. 70 / max. 120	200 A type C	0.3 A type AC or A
SUNSYS P66TL 1K	min. 70 / max. 120	160 A type C	0.3 A type AC or A
SUNSYS P100TL	120	250 A type C	0.3 A type AC or A
SUNSYS P100TL 1K	120	250 A type C	0.3 A type AC or A
SUNSYS P100TR	min. 70 / max. 120	200 A type D ²	0.3 A type AC or A

1. Determined by the size of the terminals

2. Recommended magneto-thermal switch: three poles with intervention threshold \geq 10 In

The auxiliary power supply socket must be protected with a 16 A magneto-thermal switch, curve C, and from category 2 overvoltages or greater.

The following table indicates the sizing of the wires originating from the photovoltaic generator for correct installation.

Inverter size	PV generator cable cross-section in case of shared DC inputs (mm ²) ¹	PV generator cable cross-section in case of separate DC inputs (mm ²) ²
33 kW	min. 25 / max. 120 (M8)	N.A.
66 kW	min. 50 / max. 120 (M8)	min. 25 / max. 120 (M8)
100 kW	min. 95 / max. 120 (M8)	min. 25 / max. 120 (M8)

1. Determined by the size of the terminals

2. Up to 2 cables can also be connected at the same point, max. 2x50 mm²

WARNING!

The inverter is designed for transient over-voltages in category II installations for AC terminals. If the inverter may be subjected to transient over-voltages in category III installations, protective SPDs must be provided for the AC power supply network. The SPDO option, designed to protect against category III over-voltages, can be fitted directly to the inverter. If it is used, the distance between the inverter and type I centralised SPD protection must be ≥ 15 m.

WARNING!

The inverter is designed for transient over-voltages in category II installations for DC terminals. If the inverter may be subject to transient over-voltages in category III installations, or if the distance from the SPDs in the photovoltaic field is excessive, protective SPDs must be fitted near the inverter. The SPDI option, designed to protect against over-voltages in photovoltaic applications, can be fitted directly to the inverter.

NOTE

DC inputs do not require protection against over-voltages, if fewer than three inverter modules are connected to the same photovoltaic generator.

NOTE

Functional panel earthing (optional): for correct operation, some types of photovoltaic panel require one of the two poles to be earthed. The special optional kit (GND) can be used to earth the positive or negative pole of the photovoltaic generator. For further details and instructions, please refer to the kit (GND) installation and operating manual.

IT SYSTEM

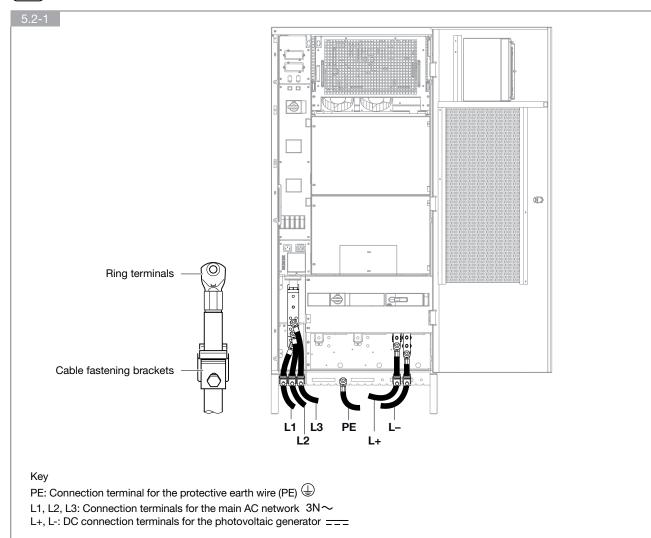
With the photovoltaic panels isolated from earth, the circuit consisting of the panels and the inverter is configured like an IT system. We therefore recommend a permanent isolation controller is used in the system or built into the inverter (IMD option).

5.2. CONNECTING THE PHOTOVOLTAIC GENERATOR AND MAIN AC NETWORK TO THE POWER TERMINALS OF THE SUNSYS P33TR INVERTER

The inverter is connected to the photovoltaic generator via the DC terminals, and to the main AC network via the AC power terminals.

- Apply the ring terminals to the cables.
- Remove the panels protecting the connection zone in front of the terminals.
- Fix the protection wire (PE) to the connection terminal.
- Fix the wires (L1, L2, L3) to the connection terminals.
- Fix the wires (L+,L-) to the connection terminals.
- Fix the cables to the cable support guide using cable fastening brackets.
- Reposition the panels protecting the connection zone in front of the terminals.

DANGER!


Risk of electric shock from live device parts!

The inverter can be connected to a maximum of three power supplies:

- 1 DC cable Photovoltaic generator power supply (separated for the three modules or shared)
- 2 AC cable Power from the mains network, supplied by the electricity company
- 3 AC cable Auxiliary power supply
- Before carrying out any work, make sure the electricity supply has been disconnected.
- All DC power supplies should be considered as part of the same circuit, even in the configuration with centralised multi-string inverter. Before carrying out any work, make sure all electricity supplies have been disconnected.

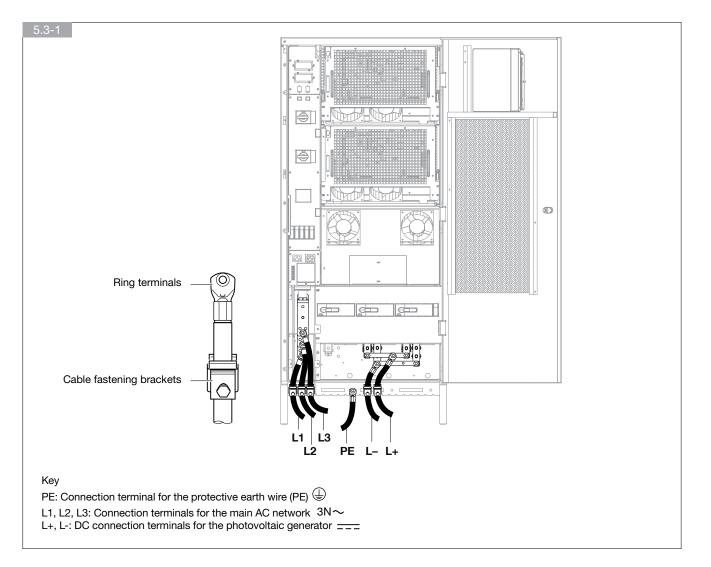
Torque for the DC and AC power terminals: 20 Nm

5.3. CONNECTING THE PHOTOVOLTAIC GENERATOR AND MAIN AC NETWORK TO THE POWER TERMINALS OF THE SUNSYS P66TR INVERTER

The inverter is connected to the photovoltaic generator via the DC terminals, and to the main AC network via the AC power terminals.

- Attach the ring terminals to the cables.
- Remove the panels protecting the connection zone in front of the terminals.
- Fix the protection wire (PE) to the connection terminal.
- Fix the wires (L1, L2, L3) to the connection terminals.
- Fix the wires (L+,L-) to the connection terminals.
- Fix the cables to the cable support guide using cable fastening brackets.
- Reposition the panels protecting the connection zone in front of the terminals.

DANGER!


Risk of electric shock from live device parts!

The inverter can be connected to a maximum of three power supplies:

- 1 DC cable Photovoltaic generator power supply (separated for the three modules or shared)
- 2 AC cable Power from the mains network, supplied by the electricity company
- 3 AC cable Auxiliary power supply
- Before carrying out any work, make sure the electricity supply has been disconnected.
- All DC power supplies should be considered as part of the same circuit, even in the configuration with centralised multi-string inverter. Before carrying out any work, make sure all electricity supplies have been disconnected.

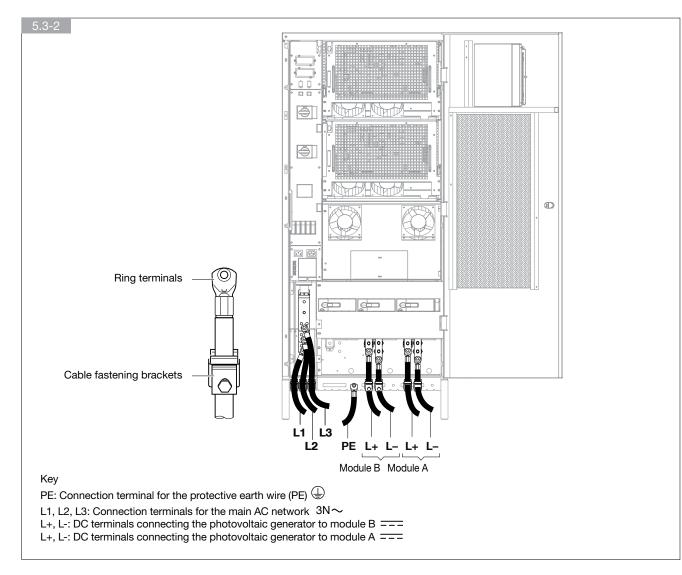
•	NOTE
	Torqu

Torque for the DC and AC power terminals: 20 Nm

The inverter is connected to the photovoltaic generator via the DC terminals, and to the main AC network via the AC power terminals.

- Apply the ring terminals to the cables.
- Remove the panels protecting the connection zone in front of the terminals.
- Remove the sharing bar for the DC terminals if using a centralised multi-string inverter.
- Fix the protection wire (PE) to the connection terminal.
- Fix the wires (L1, L2, L3) to the connection terminals.
- Fix the wires (L+,L-) to the connection terminals.
- Fix the cables to the cable support guide using cable fastening brackets.
- Reposition the panels protecting the connection zone in front of the terminals.

个


DANGER! Risk of electric shock from live device parts!

The inverter can be connected to a maximum of three power supplies:

• Before carrying out any work, make sure the electricity supply has been disconnected.

Torque for the DC and AC power terminals: 20 Nm

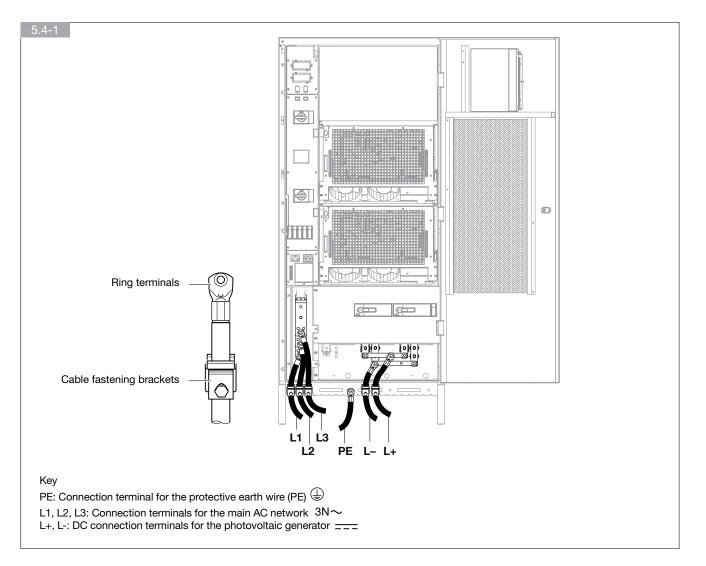
ENGLISH

5.4. CONNECTING THE PHOTOVOLTAIC GENERATOR AND MAIN AC NETWORK TO THE POWER TERMINALS OF THE SUNSYS P66TL INVERTER

The inverter is connected to the photovoltaic generator via the DC terminals, and to the main AC network via the AC power terminals.

- Attach the ring terminals to the cables.
- Remove the panels protecting the connection zone in front of the terminals.
- Fix the protection wire (PE) to the connection terminal.
- Fix the wires (L1, L2, L3) to the connection terminals.
- Fix the wires (L+,L-) to the connection terminals.
- Fix the cables to the cable support guide using cable fastening brackets.
- Reposition the panels protecting the connection zone in front of the terminals.

DANGER!


Risk of electric shock from live device parts!

The inverter can be connected to a maximum of three power supplies:

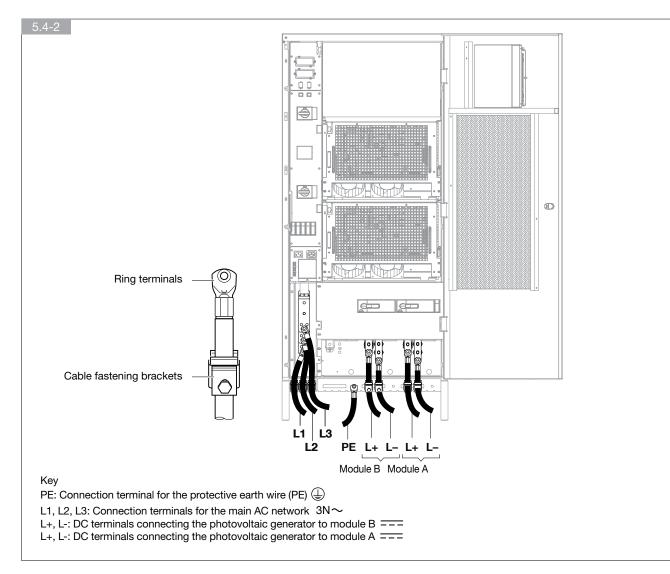
- 1 DC cable Photovoltaic generator power supply (separated for the three modules or shared)
- 2 AC cable Power from the mains network, supplied by the electricity company
- 3 AC cable Auxiliary power supply
- Before carrying out any work, make sure the electricity supply has been disconnected.
- All DC power supplies should be considered as part of the same circuit, even in the configuration with centralised multi-string inverter. Before carrying out any work, make sure all electricity supplies have been disconnected.

NOTE Torque for the DC and AC power terminals: 20 Nm

The inverter is connected to the photovoltaic generator via the DC terminals, and to the main AC network via the AC power terminals.

- Apply the ring terminals to the cables.
- Remove the panels protecting the connection zone in front of the terminals.
- Remove the sharing bar for the DC terminals if using a centralised multi-string inverter.
- Fix the protection wire (PE) to the connection terminal.
- Fix the wires (L1, L2, L3) to the connection terminals.
- Fix the wires (L+,L-) to the connection terminals.
- Fix the cables to the cable support guide using cable fastening brackets.
- Reposition the panels protecting the connection zone in front of the terminals.

DANGER!


Risk of electric shock from live device parts!

The inverter can be connected to a maximum of three power supplies:

• Before carrying out any work, make sure the electricity supply has been disconnected.

NOTE Torque for the DC and AC power terminals: 20 Nm

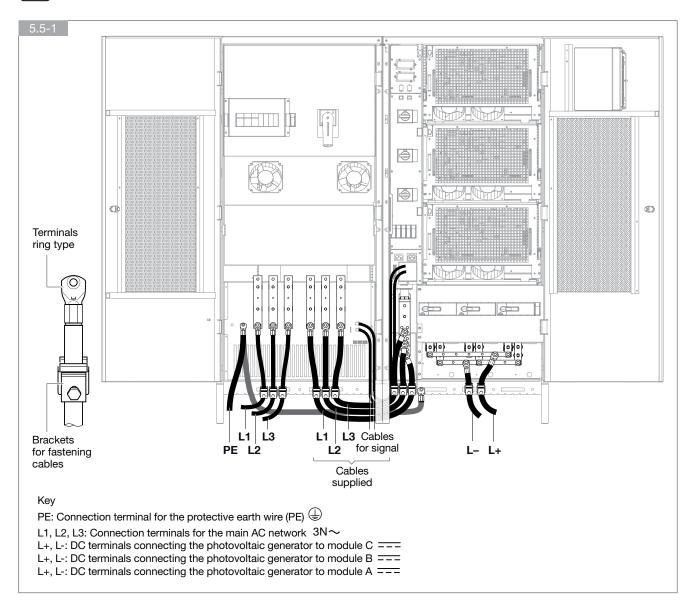
ENGLISH

5.5. CONNECTING THE PHOTOVOLTAIC GENERATOR AND MAIN AC NETWORK TO THE POWER TERMINALS OF THE SUNSYS P100TL INVERTER

The inverter is connected to the photovoltaic generator via the DC terminals, and to the main AC network via the AC power terminals. • Attach the ring terminals to the cables.

- Remove the panels protecting the connection zone in front of the terminals.
- Fix the protection wire (PE) to the connection terminal.
- Fix the wires (L+,L-) to the connection terminals.
- Fix the power cables supplied between the transformer cabinet and the inverter.
- Fix the signal cables supplied between the transformer cabinet and the inverter.
- Fix the wires (L1, L2, L3) to the connection terminals on the transformer cabinet.
- Fix the cables to the cable support guide using cable fastening brackets.
- Reposition the panels protecting the connection zone in front of the terminals.

DANGER!


Risk of electric shock from live device parts!

The inverter can be connected to a maximum of three power supplies:

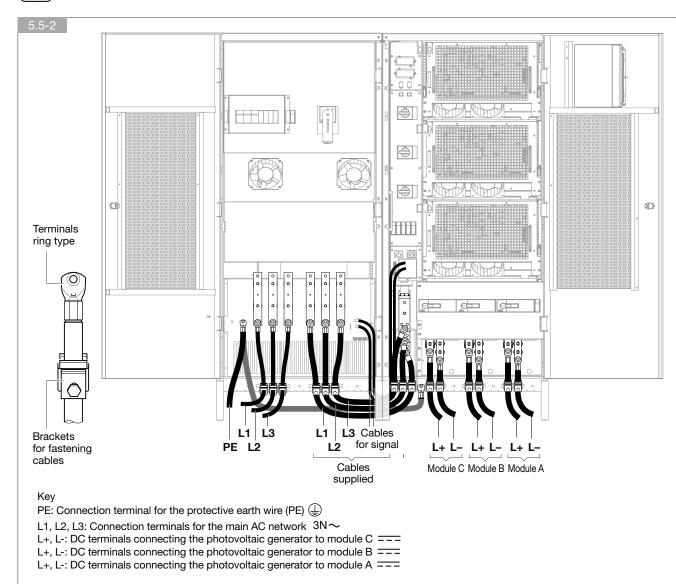
• Before carrying out any work, make sure the electricity supply has been disconnected.

NOTE Torque for the DC and AC power terminals: 20 Nm

The inverter is connected to the photovoltaic generator via the DC terminals, and to the main AC network via the AC power terminals.

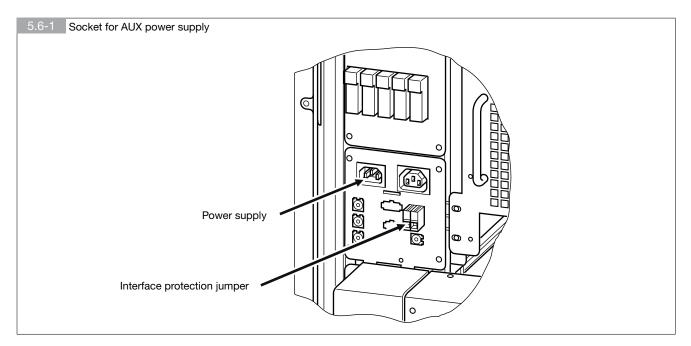
- Attach the ring terminals to the cables.
- Remove the panels protecting the connection zone in front of the terminals.
- Remove the sharing bar for the DC terminals if using a centralised multi-string inverter.
- Fix the protection wire (PE) to the connection terminal.
- Fix the wires (L+,L-) to the connection terminals.
- Fix the power cables supplied between the transformer cabinet and the inverter.
- Fix the signal cables supplied between the transformer cabinet and the inverter.
- Fix the wires (L1, L2, L3) to the connection terminals on the transformer cabinet.
- Fix the cables to the cable support guide using cable fastening brackets.
- Reposition the panels protecting the connection zone in front of the terminals.

DANGER!


Risk of electric shocks from live device parts!

The inverter can be connected to a maximum of three power supplies:

• Before carrying out any work, make sure the electricity supply has been disconnected.



Torque for the DC and AC power terminals: 20 Nm

5.6. AUXILIARY POWER SUPPLY

The inverter equipment is powered by a special 230 V single-phase line. The auxiliary voltage must be connected to the relevant socket (see figure).

DANGER! Risk of electric shock from live device parts!

The inverter can be connected to a maximum of three power supplies:

• Before carrying out any work, make sure the electricity supply has been disconnected.

WARNING! Risk of damage to the system if not observed!

The auxiliary power supply cable must be fitted with a 16 A max. protection device.

5.7. OPTIONAL INPUT FOR EXTERNAL INTERFACE PROTECTION

If local electricity supply company connection rules specify that external interface protection must be used, the external protection output signal (dry contact) can be used to control the internal contactor for the Sunsys Modular inverter, removing the jumper in figure 5.5-1.

6. OPERATING MODES

6.1. ACTIVATING THE INVERTER FOR THE FIRST TIME

The first time the equipment is switched on the system displays the **COMMISSIONING WIZARD** page and a guided procedure follows on screen. In particular, when scrolling the menu options it is possible to choose the user interface language and set the system configuration of the country in which the equipment is installed. The most important steps are described here.

6.1.1. Language setting

It is possible select the language from those the installed.

6.1.1-1			
SYS	S STANDBY	3	33 kW
со	OMMISSIONING WIZARD		
	Welcome!		
	Please select your	language:	
	anguage	English	
	EDIT	APPL	Y
	Press UP/DOWN to change	e selected ite	em -

6.1.2. Activation Code

During the initial startup procedure the four-digit activation code must be entered.

The activation code is supplied directly by the relevant Service Centre after the equipment serial number is entered using the on screen keyboard.

SYS STANDBY 33 kW COMMISSIONING WIZARD Enter the Commissioning Code. Contact SOCOMEC support service to get the code.
Enter the Commissioning Code. Contact SOCOMEC support service to get the code.
SOCOMEC support service to get the code.
Serial Number: P123456789 BACK INSERT
Press UP/DOWN to change selected item

Note: If the code is not entered the 'initial startup' procedure cannot be completed and the equipment will be prevented from operating. When contacting the Service Centre for the activation code detailed information relating to the services available for the equipment in question can be obtained, in addition to regular preventive maintenance schedules.

The 'initial startup' procedure may only be completed using the confirmation menu option that appears if the activation code has been entered by pressing **ENTER** after selecting the \checkmark symbol which appears on the on screen keyboard.

At this point the inverter is activated and ready. If the IMD permanent isolation controller (optional) is installed check its configuration via the **SERVICES** menu. For setting details please refer to the sheet supplied with the IMD.

6.1.3. Date & Time

Insert Date & Time and confirm by selecting APPLY.

6.1.3-1	
SYS STANDBY 33 kW	SYS STANDBY 33 kW
COMMISSIONING WIZARD	COMMISSIONING WIZARD
Set date:	Set time:
Date 06/12/2010	Time 08:30:00
BACK EDIT APPLY	BACK EDIT APPLY
Press ENTER to use selected key	Press ENTER to use selected key

6.1.4. System Setup

The number of modules installed in the cabinet ranges from 1 to 3 depending on the size of the machine (33 kW, 66 kW or 100 kW).

WARNING!

All modules inside the cabinet must be powered to successfully complete the configuration procedure.

When following the guided procedure if more than one module is fitted the type of connection on the DC side is required for each.

6.1.4-1
SYS STANDBY 33 kW
COMMISSIONING WIZARD
Close all DC Breakers Q1
Please enter No. of modules
No. of modules 3
BACK EDIT APPLY
Press ENTER to use selected key

This could be:

- Stand-Alone if the module in question is connected individually to an array of photovoltaic panels (see figure 2.2-9 Centralised Multi-String Inverter)
- **Modular** if the module in question is connected in parallel with other modules to the same array of photovoltaic panels (see figure 2.2-8 Centralised Modular Inverter).

Confirm the settings for each module.

l-2	
SYS STANDBY 33 kW	SYS STANDBY 33 kW
COMMISSIONING WIZARD	COMMISSIONING WIZARD
Module 1 Configuration	Module 1 Configuration
	\triangle
Module Configuration Stand alone	Module Configuration Modular
BACK EDIT APPLY	BACK EDIT APPLY
Press ENTER to use selected key	Press UP/DOWN to change selected item

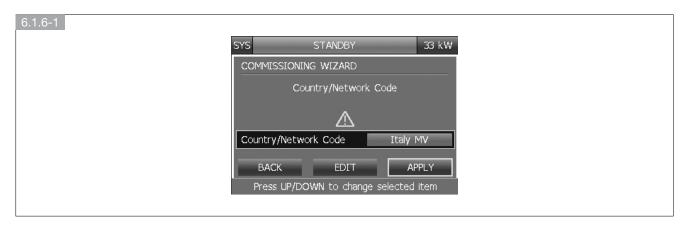
6.1.5. Transformer Configuration

When installing make sure the type of transformer selected in the Transformer Type menu corresponds to the installed device. The default transformer type is 'SOCOMEC'; only select 'External' if the machine is not fitted with a SOCOMEC transformer.

6.1.5-1
SYS STANDBY 33 kW
COMMISSIONING WIZARD
Transformer type
\land
Transformer type SOCOMEC
BACK EDIT APPLY
Press UP/DOWN to change selected item

6.1.6. Country setting

Choosing the country is particularly important as it leads to the automatic configuration of the inverter in compliance with the standards in force in that country.


All other parameters appearing in the 'initial startup' guided procedure menu will then be configured correctly and will not usually need to be changed, unless the local electricity supply company has specific requirements which need to be met.

WARNING!

The country of installation cannot be changed after the first machine activation. If this becomes necessary contact an authorised SOCOMEC service centre.

The installer is responsible for carrying out the procedure in accordance with national standards.

Note: some other options depend on the country selected, other items could be included on the commissioning wizard procedure.

6.2. SWITCHING ON THE INVERTER

Switch on the inverter as follows (Figures 6.3-1, 6.3-2, 6.3-3):

- Set all the DC input Q1 disconnection switches for the modules to position 1.
- Set the inverter AC output Q70 disconnection switch to position 1.
- Set all the AC output Q3 disconnection switches for the modules to position 1.

This procedure is also described in the menu COMMANDS > Start Procedure.

6.3. SWITCHING OFF THE INVERTER

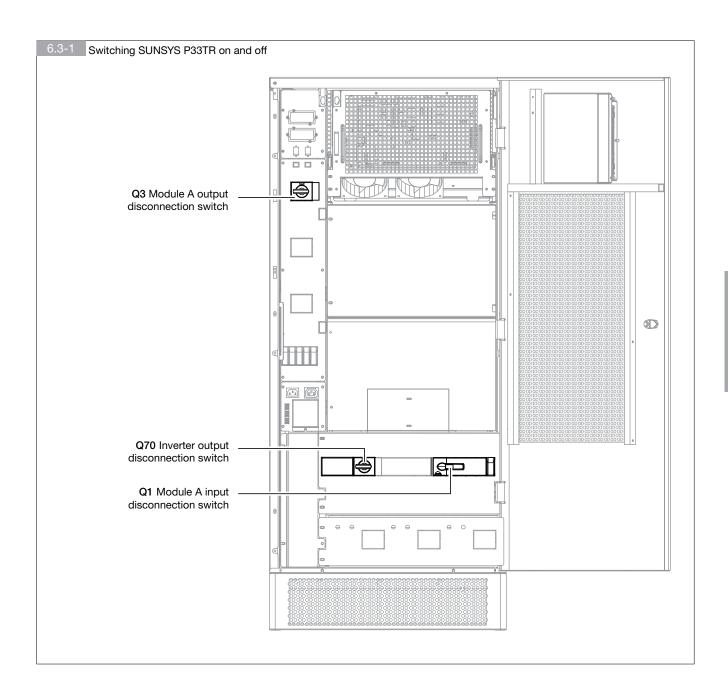
Switch off the inverter as follows (Figures 6.3-1, 6.3-2, 6.3-3):

- Set all the AC output Q3 disconnection switches for the modules to position 0.
- Set the inverter AC output Q70 disconnection switch to position 0.
- Set all the DC input Q1 disconnection switches for the modules to position 0.

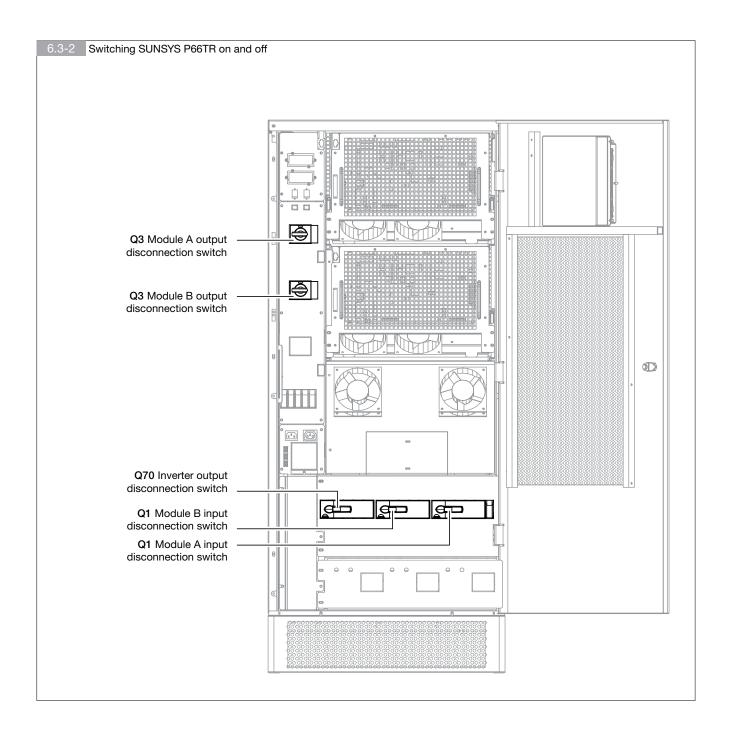
The inverter is now switched off. This procedure is also described in the menu COMMANDS > Stop Procedure.

If the auxiliary power supply also needs to be cut off, disconnect the cable from the Auxiliary Power Supply Input socket or break the fuse connection. This procedure will switch off all the auxiliary inverter equipment, including the system controller and the mimic panel. The general AC power contactor for the machine will also be opened.

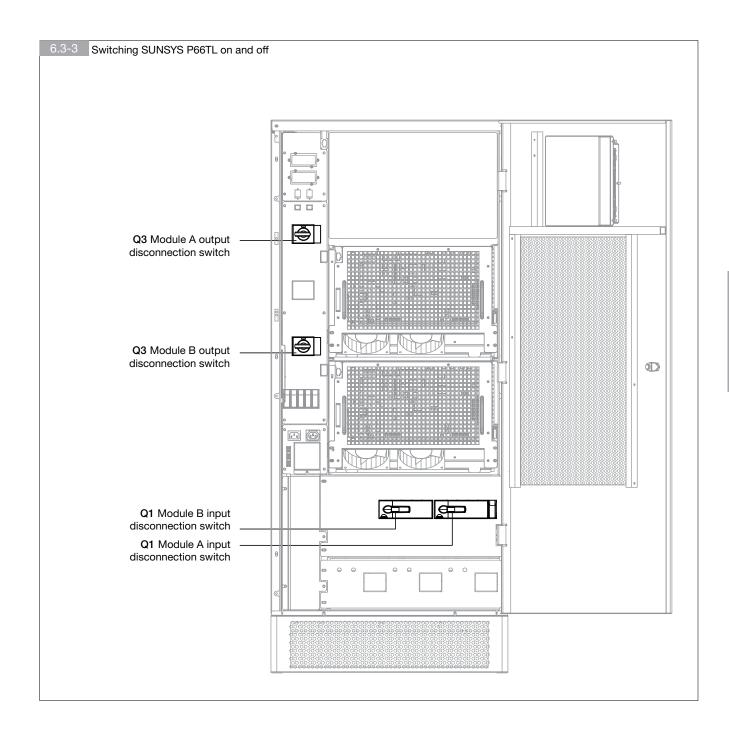
DANGER!

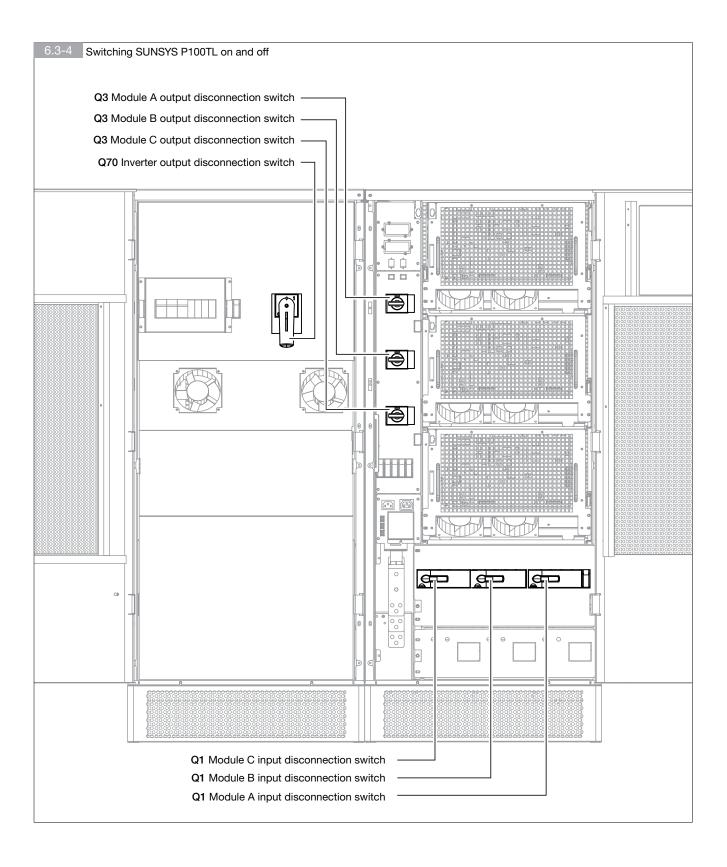

Risk of electric shock from live device parts!

The inverter can be connected to a maximum of three power supplies:

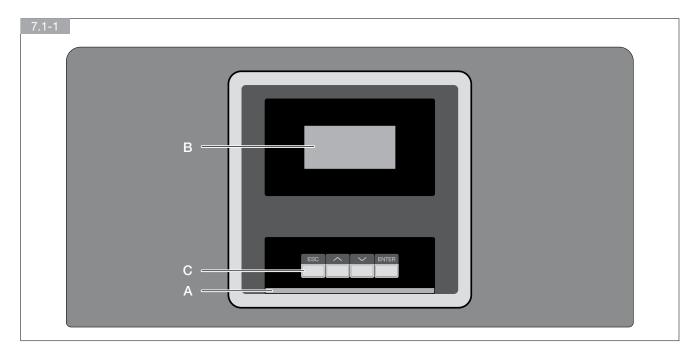

- 1) DC cable Power from the photovoltaic generator
- 2) AC cable Power from the mains network, supplied by the electricity company
- 3) AC cable Auxiliary power supply

Before carrying out any work make sure the electricity supply has been disconnected.





6. OPERATING MODES



7. MIMIC PANEL

The LCD mimic panel (figure 7.1) on the door provides all the information relating to operating status, electrical measurements, access to controls and configuration parameters.

The information is divided into three parts:

A. multicoloured luminous bar identifying the inverter status

B. alphanumerical information which, via a menu layout, provides details of any alerts, recorded values, commands and parameters

C. button usage:

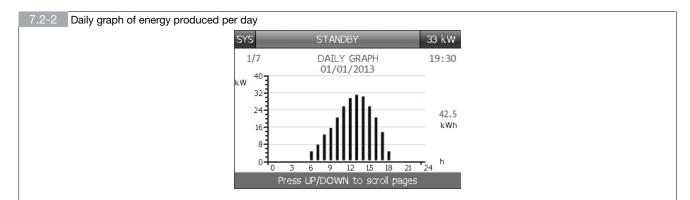
- ESC: exit the menu/parameter/current action;
- UP: scroll upwards through the menu/available values; while a parameter is being modified it increases the value every time it is pressed;
- DOWN: scroll downwards through the menu/available values; while a parameter is being modified it decreases the value every time it is pressed;
- ENTER: enter the menu suggested on the display or confirm the choices/changes made

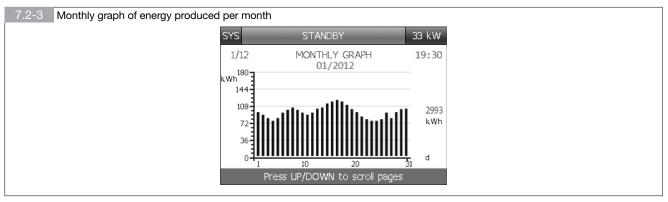
7.1. MEANING OF THE LUMINOUS STATUS BAR

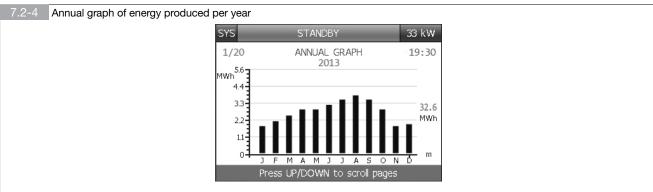
The luminous bar (figure 7.1-1) instantly signals inverter status by means of its colour:

- Red: Alert conditions present
- Yellow: Warning conditions present
- Green: Inverter working properly

Colour	Conditions displayed
RED flashing	At least one alert is present
RED	Inverter off due to alert
YELLOW flashing	At least one warning is present and one inverter is switched on
YELLOW	First maintenance period has elapsed or inverter off due to warning
GREEN flashing	Inverter in startup procedure phase
GREEN	Inverter switched on


7.2. DISPLAY MENU


Display options are organised in menus with various levels:


- to access a lower-level menu press the ENTER key
- to return to the higher level press ESC
- to scroll through the information available at a certain level use the UP and DOWN keys.

In the case of Sunsys P66TR and Sunsys P100TL models the mimic panel displays system information as a single photovoltaic inverter. It is possible to view information corresponding to individual inverters on the mimic panel by selecting the inverter serial number.

SYS STAND	ЗY	33 kW
SYSTEM		
Today run-time	125	min
Total run-time	453	hrs
Today energy	45	k₩h
Total energy	60	MWh
Today max power	27	k₩
Absolute max power	32	k₩

7.3. MENU TREE

FIRST LEVEL	SECOND LEVEL	THIRD LEVEL		
PRODUCTION DATA	STATISTICS	SYSTEM		
		MODULE		
	PRODUCTION GRAPHS	DAILY		
		MONTHLY		
		ANNUAL		
MEASUREMENTS	INVERTER POWER			
	AC MEASURES			
	DC MEASURES			
	SENSORS			
ALARMS AND WARNINGS	ALARMS			
	WARNINGS			
HISTORY LOG				
COMMANDS	START PROCEDURE			
	STOP PROCEDURE			
	ALARM RESET			
	TEST PROCEDURES			
	SYSTEM CONFIG. PROCEDURE			
	RESET STATISTICS			
	RESTART DISPLAY			
SETTINGS	PREFERENCES	LANGUAGE		
		DATE & TIME		
		BUZZER		
		DISPLAY		
		PASSWORDS		
	SYSTEM CONFIGURATION			
	INVERTER SETTINGS	COUNTRY/NETWORK CODE		
		CONNECTION PARAMETERS		
		AC INTERFACE PROTECTION		
		ACTIVE POWER ¹		
		REACTIVE POWER ¹		
		OTHER SETTINGS ²		
	OPTIONAL DEVICES			
	PERIPHERALS	NETWORK PARAMETERS		
		NETWORK TCP PORTS		
		RS232/485 PORT		
		RS232/MODEM PORT		
		RS232 SLOT OPTION		
	SERVICES	NETWORK		
SERVICE	FIRMWARE VERSION			
	SERIAL NUMBER			
	COMMISSIONING CODE			
	UPGRADE FIRMWARE			

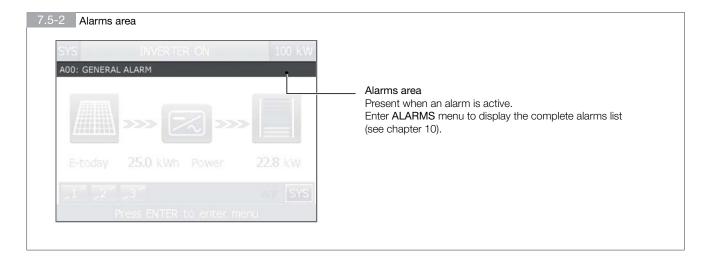
1. Present depending on the country code

2. Depends on the country code

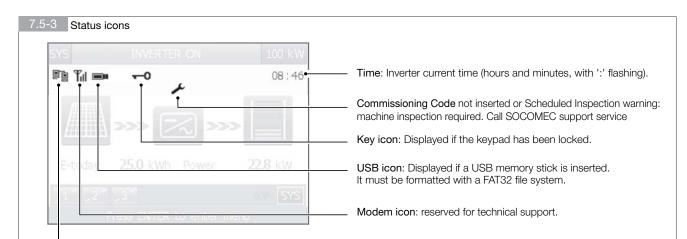
7.4. KEYPAD LOCKING

The keypad can be locked by pressing the buttons in the following sequence:

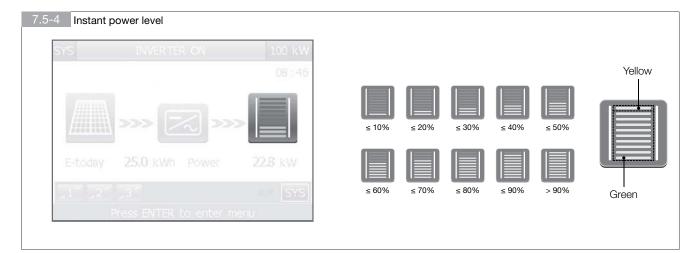
 $\mathsf{ESC} \to \mathsf{UP} \to \mathsf{DOWN} \to \mathsf{ENTER}$


To unlock the keypad the buttons must be pressed in the reverse sequence:

 $\mathsf{ENTER} \rightarrow \mathsf{DOWN} \rightarrow \mathsf{UP} \rightarrow \mathsf{ESC}$


These sequences only work only on the Mimic Panel page.

7.5. MIMIC PANEL OVERVIEW


SYS	INVERTER ON	100 kW- 08:46	Inverter Rated Power (kVA)
		1000	—— Unit status
///////			
E-today	r 25.0 kWh Power	22.8 kW	Unit panel reference
<u>_1</u> _2		SYS	
		neru	

Network icon: Displayed if a valid link has been established on the ethernet. Flashes when a remote host is communicating with the inverter.

		100 kW	
		08:46	
////			Inverter Unit (UNIT MENU). The icon colours are the same as the top bar colours.
			Daily energy produced
•		22.8 kW •	Instant power
E-today	y 25.0 kWh Power	22.0 KVV	
E-today	y 25.0 kWh Power	AT SYS	

ENGLISH

7.6. SERVICE MENU

This menu is reserved for support service personnel and holds the INVERTER identification data and utilities for the SW upgrade.

7.6.1. Language upgrade

Text translations in several languages are held in files with the *. Ing extension which are provided by SOCOMEC. Language upgrades must be performed through the USB port, using a standard USB memory stick. The USB device must be formatted with FAT16 or FAT32.

Step 1

The language file to be installed must be copied onto a USB stick and placed in the standard folder:

{USB stick}\sunsys\uwhi

Step 2

Insert the USB stick into the USB port on the back of the INVERTER door.

Step 3

Enter the menu: **SERVICE > UPGRADE FIRMWARE > UPGRADE LANGUAGES**. The SYS unit has to be selected beforehand on the main page.

Step 4

The list of files in the \sunsys\uwhi folder in the USB memory stick is shown.

Select the file you want to install and follow the instructions displayed.

Step 5

At the end of the process select Yes to restart the display.

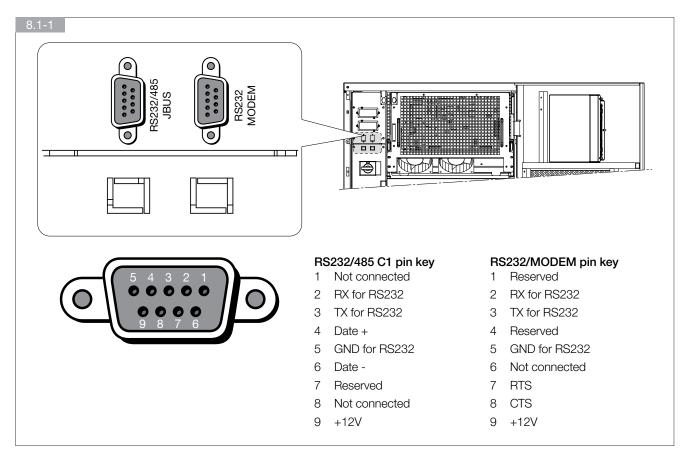
Step 6

Remove the USB stick when requested.

Step 7

The new language is available after restarting.

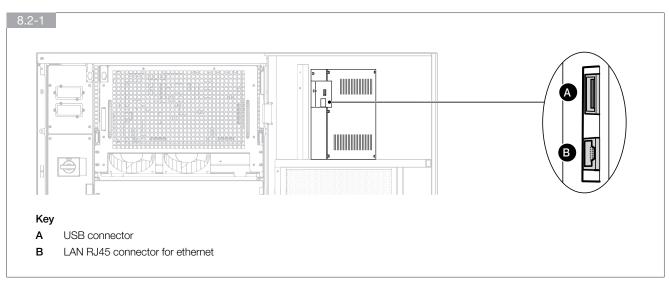
To change the language go to the SYSTEM menu: SETTINGS > PREFERENCES > LANGUAGE


Note: To restore English as the default language press the ESC button for at least 4 seconds on the main page (mimic panel page).

8. COMMUNICATION

8.1. MULTILEVEL COMMUNICATION

The photovoltaic inverter comes with the serial communication channel RS232/485 which can be used to connect to a BMS (Building Management System).



8.2. MODBUS/TCP INTERFACE

SOCOME

Innovative Power Solutions

The inverter can be monitored from remote stations using MODBUS/TCP network protocol for functionality. See menu **SETTINGS** > **CONNECTIVITY** > **PERIPHERALS** > **NETWORK PARAMETERS** to **Enabled/Disabled DHCP** setting. Restart the HMI after modifying the parameters. IP Addresses can be changed only if DHCP is disabled. Refer to JBUS/MODBUS documentation for data mapping.

43

9. PREVENTIVE MAINTENANCE

WARNING!

Inspection may only be carried out by the system manager, or by an authorised person.

WARNING!

In the event of a fault, the system must not be restarted. Inverter maintenance or repairs must be performed by SOCOMEC personnel, or by personnel from a SOCOMEC authorised support centre.

DANGER!

Risk of electric shock from live device parts!

In the event of system maintenance, carry out the following steps beforehand:

- Disconnect the photovoltaic system.
- Make sure the photovoltaic system cannot be restarted.
- Make sure the mains electricity supply has been disconnected.
- Earth the device units and short-circuit them.
- Cover or separate nearby live device units.
- Before working on the circuits upstream make sure the inverter is disconnected by opening the DC disconnection switches.

DANGER! Risk of electric shock from live device parts!

The inverter can be connected to a maximum of three power supplies:

- 1 DC cable Photovoltaic generator power supply (separated for the three modules or shared)
- 2 AC cable Power from the mains network, supplied by the electricity company
- 3 AC cable Auxiliary power supply
- Before carrying out any work, make sure the electricity supply has been disconnected.
- All DC power supplies should be considered as part of the same circuit, even in the configuration with centralised multi-string inverter. Before carrying out any work, make sure all electricity supplies have been disconnected.

DANGER! Bisk of ele

Risk of electric shock from live device parts!

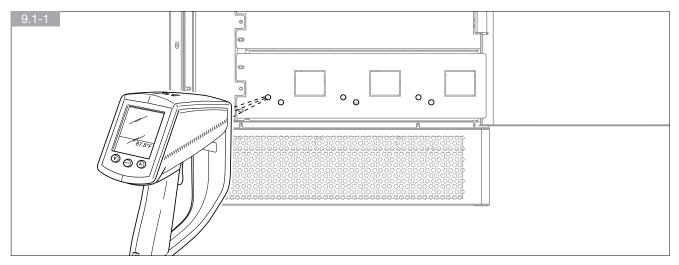
The intermediate inverter circuit may be live even after it has been deactivated.

• Wait for the power to disperse and make sure that there is none remaining.

DANGER!

Risk of electric shock from live device parts!

The photovoltaic modules are live as soon as they are exposed to sunlight.


• Take suitable measures and make sure there is no power remaining.

9.1. REGULAR INSPECTION OF THE INVERTER

Carry out a visual and mechanical check every month, to guarantee continuous reliable operation:

- Check the transformer fans by activating them manually using the mimic panel command.
- Make sure the cables are well secured. Thermal stress means that the screws may loosen over time. Tighten the screws if necessary.
- Switch off the inverter (ch. 6).
- Check the connections, components and fuses, looking for any discolouration or damage. Discoloured components indicate damage caused by heat or corrosion and must be replaced.
- Check for excessive dust on the cards. If necessary, contact an authorised SOCOMEC service centre to request machine cleaning.
- Use the designated holes to inspect the connections using an infrared thermal camera.

9.2. PREVENTIVE INVERTER MAINTENANCE

We must specify that the inverter should undergo regular specialist maintenance (on an annual basis), in order to maintain optimum equipment efficiency while preventing system downtime and all associated damage and risks.

We recommend any preventive maintenance requirements which may be displayed automatically by the equipment via an alert/ warning message are observed at all times. All procedures carried out on the equipment must be only carried out by SOCOMEC personnel or by authorised support personnel.

Maintenance involves thorough operational checks of the various electronic and mechanical parts and, if necessary, the replacement of parts subject to wear and tear. These parts typically include fans and capacitors.

Fans

The lifetime of the fans used to cool powered parts depends on the environmental and operating conditions (temperature, dust). The average life of these components is 10 years.

WARNING!

Fan replacement can only be carried out by qualified personnel. If the fans need to be changed, they should be replaced with a product which meets SOCOMEC specifications.

Capacitors

Electrolytic capacitors and filter capacitors are fitted inside the appliance; the life of these components depends on the environmental and operating conditions, which is why we recommend they are replaced by authorised personnel as a preventive measure. The average life of these components is 10 years.

The effective condition of the components is verified during the preventive maintenance visit.

10. TROUBLESHOOTING

The alert messages which can appear on the display offer immediate diagnosis of any faults, malfunctions or breakdowns in the photovoltaic system. The following events are indicated:

• Warning: non-serious alert conditions which cause the inverter to stop but can be reset automatically

• Alerts: serious alert conditions which cause the inverter to stop and require a manual reset command from the operator to be reset. Alerts and warnings are divided into two categories:

- System Alerts/Warnings: these affect the parts external to the Inverter, such as the mains power network, the output line and the ambient temperature. Corrective actions can usually be activated by the user (system installer or operator)
- Inverter Alerts/Warnings: relate to the parts of the inverter. Corrective actions are generally activated by the Support Service.

10.1. SYSTEM WARNINGS

• W01: AMBIENT OVER-TEMPERATURE

The ambient temperature recorded by the inverter is over 45° (see values on mimic panel). Check the ventilation or air-conditioning system in the inverter room.

• W02: AMBIENT TEMPERATURE UNDER THE MINIMUM THRESHOLD

The ambient temperature recorded by the inverter is under 15° (see value on mimic panel). Check the ventilation or air-conditioning system in the inverter room.

• W03: SYSTEM EFFICIENCY NOT ALIGNED

The power obtained from the inverter is too low in relation to the rated system power. Make sure the photovoltaic panels are connected properly.

• W04: INTERNAL OVER-TEMPERATURE; W66: INTERNAL OVER-TEMPERATURE

The temperature of the inverter power structure is over 110° (see value on mimic panel). Check the ventilation or air-conditioning system in the inverter room.

• W05: LOW RADIATION; W67: LOW RADIATION

The inverter is waiting for the incoming energy level to increase before attempting activation.

• W06: CONTINUOUS INPUT VOLTAGE TOO LOW

The inverter is waiting for the incoming energy level to increase before attempting activation.

• W19: NO INVERTER PRESENT

There has been no radiation for over 24 hours: this condition may be normal but is highlighted so that the necessary checks can be carried out.

• W20: HIGH IMPEDANCE TO EARTH

If the isolation controller and resistance to earth recorded is too high this warning is generated: check the protective fuses and if the problem persists contact the support service.

• W69: AC INPUT NETWORK OUTSIDE TOLERATED RANGE; W70: AC INPUT NETWORK OUTSIDE FREQUENCY RANGE

The input network is missing or insufficient (voltage and/or frequency values incorrect in reference to the information provided in the technical data table); if this is not due to a general network absence, check for any disconnection of protective devices upstream of the inverter. Check the applied voltage and frequency comply with the values set on the mimic panel.

10.2. INVERTER WARNINGS

• W13: HIGH IMPEDANCE TO EARTH

Make sure the photovoltaic panel earth connection is intact

• W65: INVERTER IN DERATING

The inverter is reducing the power dispensed to the network. Check the other alerts and/or visual warnings.

• W76: FAN FAULT

Ventilation system is not working properly; make sure the air inlets and outlets on the front and rear of the inverter are free from obstruction.

10.3. SYSTEM ALERTS

• A01: SWITCH-OFF DUE TO EXTERNAL COMMAND; A59: SWITCH-OFF DUE TO EXTERNAL COMMAND

The inverter is switched off due to an external instant switch-off command. Check the external contact

• A04: LOW IMPEDANCE TO EARTH

Check the photovoltaic system isolation to earth

A05: AC DISCHARGERS TRIGGERED

Check and replace if necessary

• A06: DC DISCHARGERS TRIGGERED

Check and replace if necessary

• A07: OUTPUT CONTACTOR ALERTS

The output contactor status is not consistent; contact the support service

• A08: TRANSFORMER OVER-TEMPERATURE

Check the ventilation or air-conditioning system in the inverter room.

• A09: AC INPUT NETWORK RMS VALUE OUTSIDE TOLERATED RANGE; A10: AC INPUT NETWORK FREQUENCY OUTSIDE FREQUENCY RANGE

The input network is missing or insufficient (incorrect voltage and/or frequency values); if this is not due to a general network absence, check for any disconnection of protective devices upstream of the inverter.

Check the applied voltage and frequency comply with the values set on the mimic panel.

• A15: INCORRECT SYSTEM CONFIGURATION

Error in configuration parameters; contact the support service.

10.4. INVERTER ALERTS

• A47 : MODULES WITH DIFFERENT CONFIGURATION

Check the modules are identified by the same model code for Hardware compatibility.

• A68: INVERTER OFF DUE TO OVER-TEMPERATURE

Check the ventilation or air-conditioning system in the inverter room.

• A69: FAN FAULT

Ventilation system breakdown; make sure the air inlets and outlets on the front and rear of the inverter are free from obstruction.

• A70: SCHEDULED CHECKS

To guarantee product performance and efficiency remain at an optimum level, the equipment must be checked regularly by the support service. The message Scheduled Check appearing on the mimic panel indicates that it would be wise to have the equipment inspected by a specialised technician.

• A72: INVERTER LOCKED

Contact the Support Service.

• A73: INPUT OVER-VOLTAGE

The DC input voltage has exceeded 900 V. Check the connections.

HEAD OFFICE

SOCOMEC GROUP

S.A. SOCOMEC capital 10 816 800€ R.C.S. Strasbourg B 548 500 149 B.P. 60010 - 1, rue de Westhouse F-67235 Benfeld Cedex - FRANCE Tel. +33 3 88 57 41 41 Fax +33 3 88 74 08 00 info.scp.isd@socomec.com

www.socomec.com

IOMSUNMOXX00-GB 03 12.2013

YOUR DISTRIBUTOR